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Why Is this important?

® Irrigation has rapidly expanded since
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Why Is this important?

¢ Climate Change

® |ncreased drought prevalence and severity expected

® Accelerated stress on Ogallala Aquifer
® Groundwater withdrawals more costly

® Great Plains are one of the most productive agricultural
regions in the world

® [ood scarcity
® |nstability related to food prices




Biophysical Impacts of Irrigation

® Increased latent heat flux over irrigated areas

® Drives cooler temperatures and higher humidity at the
surface




Effect of irrigation on convection

® [rrigation drives competing effects on thunderstorm
development

® |ncreased moisture increases Convective Available
Potential Energy (CAPE)

® Decreased temperatures suppress the Planetary
Boundary Layer, inhibiting convection




Experimental Setup

® Weather Research and Forecasting (WRF) Model

® 10 km resolution ® Morrison Microphysics

® 30-second time step ® YSU PBL Scheme

® No cumulus parameter ¢ RRTM Longwave Scheme

® Noah Land Surface Model ® Dudhia Shortwave Scheme
MODIS Land Use Category

Evergreen Meedleaf Forest
Evergreen Broadleaf Forest
Deciduous Meedleaf Forest
Deciduous Broadleaf Forest

Mixed Forests

Closed Shrublands

Open Shrublands

Woody Savannas

Savannas
Grasslands | |
Permanent Wetlands
Croplands
Urban
Cropland/Matural Vegetation |
Snow and lce
Barren
Water
Wooded Tundra
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Experimental Setup

e Simulations of 9 different years
® 3 droughtyears, 3 normal years, and 3 pluvial (flood) years
® 3 El Nino years, 3 neutral years, and 3 La Nifia years
® Full spectrum of climate conditions

® Each year simulated with and without irrigation

____________|Drought

Current Vegetation, EI Nifo: 1983  EI Nino: 1997  EIl Nino: 1993
Irrigated Neutral: 2000  Neutral: 1990  Neutral: 2008
La Nina: 1988 La Nifa: 1985 La Nina: 2007

Current vegetation, EI Nifo: 1983  EI Nino: 1997  EIl Nino: 1993
non-irrigated Neutral: 2000  Neutral: 1990  Neutral: 2008
(control) La Nifia: 1988 La Nina: 1985 La Nina: 2007




Experimental Setup
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Irrigation Representation in WRF

(a)

Irrigated Portion of Grid Cell (f)

(b)

Soil set to saturation

Non-irrigated portion of grid cell (1-f)

Divided grid cells into irrigated and non-irrigated
sections based on the irrigation fraction (f).

Soil moisture in the irrigated portion of grid cell
was kept at saturation, while soil moisture in the
non-irrigated portion of grid cell varied with
normal model physics.
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Model Results

WRF Irrigated minus Control Simulated Pracipitation {mm)
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Model Results

® Jrrigation results in a 1% increase in precipitation over the Great
Plains (p < 0.05)

additional CAPE

® Smallest precipitation increase during drought years
® Due to greatest decrease in planetary boundary layer height
® Decrease over irrigated areas

® What is the source of the increase in precipitation?
® Evapotranspiration (ET) over irrigated areas?

® Additional advection of moisture from external sources (e.g. Gulf of
Mexico)?




Determination of Irrigation-Induced
Precipitation

® Backward trajectory analysis determines source of precipitation
® Derived from backward trajectory analysis of Brubaker et al. (2001)

cipitation from Individual Precipitation from Irrigat
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Determination of Irrigation-Induced
Precipitation

mm Precipitation Increase
mm Precipitation Decrease

® Performed for irrigated and control simulations

® Difference is the precipitation of water from ET over irrigated
fields (aka irrigation-induced precipitation)




Irrigation-Induced Precipitation
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Irrigation-Induced Precipitation

May-September irrigation-induced preC|p|tat|on (mm) a
‘moisture-weighted wind vectors




Irrlgatlon Induced PreC|p|tat|on
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Irrigation-Induced Precipitation

® Heaviest irrigation-induced precipitation coincident with simulated
precipitation increases

® 8.96 mm simulated total precipitation change

® 9.11 mm of irrigation-induced precipitation

® Irrigation-induced precipitation responsible for simulated precipitation
increase

® Coincident with observed precipitation increases after irrigation

May-September precipitation difference for all simulated years (mm) May-September Irrigation-Induced Precipitation Distribution (mm)

it | | I | [ I [ | |



Irrigation-Induced Precipitation

» Majority comes from irrigated
areas in the northern High
Plains

Percentage Contribution of Irrigation-Induced Precipitation (mm) by Region
60 -

 Smaller amount from the
southern High Plains
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Effect on Water Budget

Changes in May-September water budget due to irrigation {(mm)

® Evapotranspiration increase
greater than precipitation
Increase
® |rrigation results in a net loss of

17.7 mm (0.7”) during the warm
season

® Only 15% of evapotranspired
water from irrigation returns to
the region

20 5
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10 4

Total Change (mm)

® |rrigation-induced precipitation =
total precipitation change
® Additional precipitation due to

evapotranspiration over irrigated
fields




Conclusions

® [rrigation results in a small increase in rainfall (1%) over
the Great Plains

® Can be traced to ET over irrigated fields
® | argest increase in precipitation during flood years

® Change in evapotranspiration > precipitation increase

® |rrigation results in a net loss of water during the warm
season
® Most magnified during drought years
® Smallest increase in precipitation
® |argestincrease in ET
® Future Consequences
® |ncreased drought frequency with climate change
® EXxpect greater water loss due to irrigation
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